Astronomie: Synchrotron-Strahlung

Gehört zu: Physik
Siehe auch: Quantenmechanik, Relativitätstheorie, Elementarteilchen

Stand: 02.08.2023

Synchrotron-Strahlung

Wenn sich elektrisch geladene Teilchen (z.B. Elektronen) gleichförmig bewegen, geschieht nichts besonderes.

Wenn sich solche Teilchen (z.B. Elektronen) aber nicht gleichförmig bewegen, also bescheunigt werden, gebremst werden oder ihre Richtung verändern, dann entsteht elektromagnetische Strahlung; d.h. es werden Photonen abgestrahlt, die der Energiedifferenz entsprechen. Allgemein heisst so eine Strahlung “Bremsstrahlung”.

Abbildung 1: Bremsstrahlung (Wikipedia)

Bremsstrahlung

Abbildung 2: Bremsstrahlung (http://microanalyst.mikroanalytik.de/info1.phtml)

Klassische Bremsstrahlung

Ein klassische Anwendung dieses Effekts ist das Erzeugen von Röntgen-Strahlen. Dazu werden Elektronen beschleunigt und dann auf ein Stück Metall geschossen, wo sie durch das Coulomb-Feld der Metallatome abgebremst werden.

Relativistische Bremsstrahlung

Wenn man zu sehr hohen Energien (v > 0,9 c) kommt, kann man  relativistische Effekte nicht mehr vernachlässigen; man spricht dann von “relativistischen” Teilchen (z.B. Elektronen). Diese Art Bremsstrahlung nennt man “Synchrotron-Strahlung”; auch weil solche hohen Energien praktisch nur in Teilchenbescheunigern mit Magnetfeldern erzielt werden können.

Die Richtung dieser Synchrotron-Strahlung ist tangential zur Bahn des bewegten Teilchens – vorrangig nach vorne, aber auch etwas nach hinten.

Der Name Synchrotron-Strahlung

Man nennt das “Synchrotron-Strahlung”, weil diese Strahlung zu erst (1947) in Teilchenbeschleunigern, die man Sychrotron nannte, auftrat und nachgewiesen wurde. In einem solchen Teilchenbeschleuniger werden geladene Teilchen (z.B. Elektronen) durch Magnete so abgelenkt, dass ein Kreisbahn entsteht, was eine Beschleunigung bedeutet.

Stärke der Synchrotron-Strahlung

Je größer die Geschwindigkeitsänderung pro Zeiteinheit (also die Beschleunigung als Vektor) ist, desdo intensiver ist auch die Synchrotron-Strahlung, wobei ein breites Spektrum entsteht: vom Infrarot bis zum Röntgenbereich…

Da viele Elektronen unterschiedlich stark abgelenkt bzw. abgebremst werden, entstehen Photonen mit unterschiedlichen Energien. Die Energieverteilung der Photonen ist deswegen kontinuierlich und breit. Bremsstrahlung hat ein kontinuierliches Spektrum.

Wenn man besonders starke Synchrotron-Strahlung herstellen will, reichen “einfache” Teilchenbescheuniger, wie Synchrotrons den Forschern aber nicht mehr aus. Man muss dann die bewegten geladenen Teilchen durch  Parcours von starken Magneten schicken, sodass sie bei diesen vielen Richtungswechseln tausendmal stärker als in den Kurven eines klassischen Ringbeschleunigers strahlen.

Synchrotron-Strahlung in der Astronomie

Synchrotronstrahlung gibt es nicht erst seit es Teilchenbeschleuniger gibt, sondern auch im Weltall gibt es Quellen.

In der Astronomie beobachtet man Synchrotronstrahlung immer dann, wenn sich ein heißes Plasma in einem Magnetfeld befindet. Beispiele für kosmische Synchrotronquellen sind Pulsare, Radiogalaxien und Quasare.

Bei astronomischen Synchrotronquellen, kann es auch weniger energetische Synchrotronstrahung geben, die dann Frequenzen im Radiobereich hat.