Physik: Quanten-Verschränkung

Gehört zu: Quantenmechanik
Siehe auch: Wellenfunktion

Stand: 25.9.2024

Quanten-Verschränkung – Entanglement

YouTube: https://youtu.be/WSD24yvMj1w?feature=shared

Zwei Teilchen (Quanten-Teilchen) können “verschränkt” sein – engl. “entangled”.

Zwei verschränkte Teilchen können entstehen, wenn ein ursprüngliches Teilchen in zwei Teilchen zerfällt. Wenn das ursprüngliche Teilchen eine Erhaltungseigenschaft hatte, muss diese in den entstandenen zwei Teilchen in Summe unverändert auftauchen.

Man sagt auch, dass die zwei Teilchen eine gemeinsame Wellenfunktion haben.

Manchmal hört man auch, dass ein Quanten-System aus zwei Teilchen als Wellenfunktion das Produkt der beiden einzelnen Wellenfunktionen hat.

Wie enstehen verschränkte Teilchen?

Die Standard-Methode verschränkte Teilchen zu erzeugen ist die sog. “Paarerzeugung”; d.h. ein energiereiches einzelnen Teilchen zerfällt in ein Paar von Teilchen. Typischer Weise ein Teilchen und sein Antiteilchen; beispielsweise:

  • Elektron und Positron
  • Ein hochenegetisches Photon zerfällt in zwei Photonen mit halber Energie (halber Frequenz) z.B. beim Durchgang durch einen nichtlinearen Kristall

Die beiden so entstandenen Teilchen haben dann in der Summe die Eigenschaften des ursprünglichen Teilchens. soweit es sich um Erhaltungsgrößen handelt. Z.B. Ladung, Spin, Energie, Impuls etc. In diesem Sinne sind die beiden Teilchen also über diese Erhaltungsgrößen mit einander verbunden.

Die beiden verschränkten Teilchen haben dann eine gemeinsame Wellenfunktion. Wenn man an einem der beiden Teilchen eine Messung einer Observablen vornimmt, kollabiert die ganze Wellenfunktion instantan (s. Kopenhagener Deutung) und der Wert der Observablen für beide Teilchen (auch wenn sie weiter von einander entfernt sind) wird gleichzeitig “scharf”.

Physik: Kopenhagener Deutung

Gehört zu: Quantenpysik
Siehe auch: Wellenfunktion, Materiewellen

Stand: 25.9.2024

Nach der sog. Kopenhagener Deutung (1927 Niels Bohr und Werner Heisenberg) ergibt sich aus der Wellenfunktion eines Teilchens eine Wahrscheinlichkeitsdichte ρ(x,t) für den Aufenthaltsort und zwar wird dabei der Betrag der Wellenfunktion zum Quadrat genommen:.

\( \Large \rho(x,t) = | \Psi(x,t) |^2 \\\)

Aus dieser Wahrscheinlichkeitsdichte ρ ergibt sich der Erwartungswert für den Ort des Teilchens zum Zeitpunkt t:

\(\Large \langle x \rangle = \int\limits_{-\infty}^{+\infty} x \, \rho(x,t) \, dx = \int\limits_{-\infty}^{+\infty} x \, | \Psi(x,t) |^2 \, dx \\\)

Da der Betrag einer komplexen Zahl z definiert ist über: \( | z |^2 = z \cdot z^* \) folgt daraus…

\(\Large \langle x \rangle = \int\limits_{-\infty}^{+\infty} \Psi^*(x,t) \, x \, \Psi(x,t)  \, dx \\\)

In dieser Form sehen wir schon einen ersten Operator (s.u.), der auf die Wellenfunktion wirkt und uns ein Observable (den Ort) als Erwartungswert bringt. Zum Erwartungswert siehe auch: Susskind.

Im Falle einer Wellenfunktion mit einer ganz dünnen und hohen Spitze und ansonsten Null können wir den Erwartungswert des Ortes <x> gleichsetzen mit dem definitiven Ort des Teilchens und bekommen- nach einigem Rechnen – die Newtonsche Mechanik. So zeigt es im Prinzip Paul Ehrenfest.

Physik: Teilreflektion

Gehört zu: Physik, Quantenmechanik

Teilreflektion

Die Teilreflektion von Licht an einer Oberfläche hat schon Isaac Newton, der ja von einer Teilchennatur des Lichtes ausging, beschäftigt. Dies ist eines der Paradebeispiele der Quantenmechanik, die ja Aufenthaltswahrscheinlichkeiten für Teilchen ausrechnen will.

Wenn ein monochromatischer Lichtstrahl auf eine Glasplatte scheint, haben wir das Phänomen der Teilreflektion.

Das Ereignis “Reflektion eines Photons an der Grenzschicht Luft/Glas”  habe die Wahrscheinlichkeit von 4% = 4/100 = 1/25. Die Wellenfunktion dieses Ereignisses wäre also ein Vektor der Länge Sqrt{1/25} = 1/5 = 0.2.

Die Drehung des Vektors wäre proportional der Zeit, die das Licht braucht um den Weg zurückzulegen. Wenn wir die Teilreflektion an der dünnen Glasschicht betrachten, spielt nur die Differenz der Laufzeiten eine Rolle, wenn wir die Differenz der Drehwinkel bestimmen wollen..

So bekommen wir gute Beispiele an denen sich Auswirkungen der Quantenphysik in alltälichen Phänomenen demonstieren lassen.