Astronomie: Raumsonden

Gehört zu: Astronomie
Siehe auch: Lagrange-Punkte, Swing-by-Manöver, Himmelsmechanik, Künstliche Erdsatelliten

Stand: 26.7.2023

Raumsonden gestartet 2023

Kürzlich gestatet: EUCLID

Gestartet am 1.7.2023 von einem ESA-Konsortium mit einer Falcon-9 von Cape Caneveral

Zielort: Halo-Bahn um den Langrange-Punkt L2 ca. 30 Tage nach dem Start

Aufgabe:
Kartierung der räumlichen Verteilung von mehreren Milliarden Galaxien. Mit den Daten erhoffen sich die sechs aus Deutschland beteiligten Institute des internationalen Euclid-Konsortiums Aufschluss über den Einfluss der dunklen Materie und dunklen Energie auf die Struktur des Universums.

Aktuell: JUICE

Gestartet am 14.4.2023 von der ESA mit einer Ariane 5 vom Weltraumbahnhof Kourou

Zielort: Jupiter-Orbit im Juli 2031

Aufgabe: Erforschung der Jupiter-Monde Europa, Ganymed

Raumsonden gestartet 2021

James Web Space Telescope

Gestartet am 25.12.2021 vom Weltraumbahnhof Kourou

Umlaufbahn: Lissajous-Bahn um den Lagrangepunkt L2

Raumsonden gestartet 2013

Astrometrie-Satellit Gaia

Gestartet am 19. Dezember 2013 in Kourou in Auftrag der ESA

Umlaufbahn: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Hochgenaue dreidimensionale optische Durchmusterung des Himmels

Raumsonden historisch

Weltraumteleskop Kepler

Start: 7. März 2009 von Cape Canaveral (NASA)

Bahn: um die Sonne, etwas hinter der Erde zurückbleibend

Aufgabe: Entdeckung von extrasolaren Planeten

Instrument: Schmidt-Teleskop (1,4 Meter Spiegel, 0,95 Meter Schmidt-Platte)

Weltraumteleskop Herschel

Gestartet am 14.5.2009 von Kourou

Zielort: Halo-Bahn um den Lagrangepunkt L2

Aufgabe: Untersuchung junger Galaxien im Infrarot, Sternentstehung u.a.

Instrument: 3,5 Meter Spiegel aus Silizium-Carbid

Weltraumteleskop Planck

Gestartet am 14.5.2009 von Kourou

Zielort: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Untersuchung der kosmischen Hintergrundstrahlung

Instrument: Hauptspiegel 1,75 Meter mit den Instrumenten HFI und LFI

WMAP-Satellit

Wilkinson Microwave Anisotropy Probe

Gestartet am 30.6.2001 (NASA)

Zielort: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Messung der Kosmischen Hintergrundstrahlung

Weltraumteleskop Hubble

Start: 24.04.1990 von der Raumfähre Discovery

Bahn: Erdumlaufbahn  (also eigentlich ein künstlicher Erdsatellit und keine Raumsonde)

Aufgabe:

Instrument: Speigelteleskop 2,4 Meter Spiegeldurchmesser

Physik: Hohmann-Transfer-Orbit

Gehört zu: Himmelsmechanik, Raumfahrt
Siehe auch: Lagrange-Punkte, Swing-by Manöver
Benutzt: Grafik aus Wikipedia

Hohmann-Transfer-Bahn

Der Hohmann-Transfer ist ein energetisch günstiger Übergang zwischen zwei Bahnen um einen dominierenden Himmelskörper. Die Transfer-Ellipse verläuft sowohl zur Ausgangsbahn als auch zur Zielbahn tangential; dort ist jeweils ein Kraftstoß nötig, um die Geschwindigkeit anzupassen. Nach: Walter Hohmann (1880-1945)

Abbildung 1: Hohmann-Transfer-Bahn (Wikipedia: Hohmann_transfer_orbit.svg)

Wikipedia: Diese Datei ist unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 2.5 generisch“ (US-amerikanisch) lizenziert.

Astronomie: Swing-by-Manöver

Gehört zu: Astronomie, Himmelsmechanik
Siehe auch: Sonnensystem

Stand: 29.07.2020

Was bringen Swing-by-Manöver?

Als Schüler war ich ja ein Fan von SciFi-Heften. Ich erinnere mich an eine SciFi-Geschichte, bei der der “geniale Held” auf die Idee kam, für eine längere Reise zum Saturn den Asteroiden (944) Hidalgo zu verwenden, um Treibstoff zu sparen.

Schon als Schüler war mir klar, das er statt auf dem Hidalgo zu landen (mit Relativgeschwindigkeit Null), auch mit der gleichen Energie einfach auf die Hidalgobahn einschwenken könnte und dann nach den Gesetzen der Himmelsmechanik exakt wie der Hidalgo selbst sich bewegen würde und schließlich an der Saturnbahn angekommen, müsste er mit der gleichen Energie wie sie zum Überwechseln von Hidalgo auf den Saturn benötigt wird, auch aus seiner Hidago nachempfundenen Bahn in die Saturnbahn einschwenken können. Er hätte also keine Energie (Treibstoff) gespart.

In der Raumfahrt der 70er Jahre hörte ich nun erneut von mir ähnlich klingenden “Wunder-Manövern” der Raumsonden Pioneer 10 und Pioneer 11, die Treibstoff sparen sollten. War das das gleiche (wie oben) Null-Summen-Spiel oder was steckte da dahinter (wenn die NASA mit so etwas ernsthaft arbeitet)?

Michael Minovitch, der am Jet Propulsion Laboratory (JPL) arbeitete, berechnete 1961 erstmals die Daten solcher “Swing-by” Manöver (auch “Gravitational Slingshot” oder “fly by” genannt) . Das war tatsächlich kein “Null-Summen-Spiel”, sondern eine realistische Möglichkeit durch solche Manöver Energie “einzusparen” und die “böse” Raketengleichung auszutricksen. Schon in der Frühzeit der Raumfahrt hatte die sowjetische Sonde Luna 3 (1959) die Swing-by-Technik ausgenutzt.

Quelle: MIT OpenCourseWare  (Youtube Video https://youtu.be/1s6_4qX-u2o)

Himmelsmechanik von Swing-by-Manövern

Nehmen wir mal ein stark vereinfachtes Gedankenmodell: Auf der Höhe der Saturnbahn nähert sich eine Raumsonde dem Saturn.

Zur Erklärung dieses “positiven” Swing-by-Effekts betrachten wir die Angelegenheit mal in zwei unterschiedlichen Koordinatensystemen.

Im Koordinatensystem “Sonnensystem” sehen wir folgendes:

  • der Saturn bewege sich mit eine Bahngeschwindigkeit von vs  (ca. 9,65 km/s)
  • die Raumsonde bewege sich mit einer dreifach so großen Geschwindigkeit v1 genau entgegengesetzt auf den Saturn zu (also: v1 = -3 vs)
  • nach dem Swing-by bewege sich die Raumsonde mit einer Geschwindigkeit v2 in exakt der gleichen Richtung wie der Saturn

Wenn wir dieses Geschehen in einem Koordinatensystem “Saturn” (Relativgeschwindigkeiten in Bezug auf Saturn, Superscript “rel”) beschreiben, ergibt sich:

  • Geschwindigkeit des Saturn: vsrel = 0
  • Raumsonde ankommend (“initial”): v1rel = v1 – vs
  • Raumsonde wegfliegend (“final”):    v2rel = v2 – vs

Der Erhaltungssatz (Impuls) in Bezug auf das Koordinatensystem “Saturn” ergibt:

v1rel = – v2rel

Und damit:

v1 – vs = -v2 + vs

2 vs = v2 + v1

Wenn wir hierin einsetzen: v1 = -3vs bekommen wir:

v2 = 5 vs = – (5/3) v1

Die Geschwindigkeit der Raumsonde hat sich also deutlich (Faktor 1,666..) erhöht.

Genaugenommen ist die Bahngeschwindigkeit des Saturn vor dem Swing-by und nach dem Swing-by nicht ganz genau gleich. Wir vernachlässigen diesen winzigen Unterschied hier wegen der Massenverhältnisse (Saturnmasse 5,6 * 1026kg).