Astronomie: Sphärische Trigonometrie

Gehört zu: Mathematik
Siehe auch: Tägliche Bewegung der Gestirne, Diagramm
Benötigt: WordPress Latex-Plugin, WordPress Plugin Google Drive Embedder

Was ist Sphärische Trigonometrie?

Die Ebene Trigonometrie ist die Lehre von den Dreiecken in der Ebene.

Die Sphärische Trigonometrie ist die Lehre von den Dreiecken auf einer Kugeloberfläche. Solche Dreiecke werden durch Abschnitte von Großkreisen gebildet.

Das Polar-Dreieck auf der Himmelskugel

Zur Umrechnung eines Koordinatensystems in ein anderes zeichnet man sich ein sog. Polar-Dreieck, in dem die “Pole” (“Drehpunkte”) beider Koordinatensysteme vorkommen.

Zur Umrechnung der äquatorialen Koordinaten Deklination (δ) und Stundenwinkel (t) in die horizontalen Koordinaten Höhe (h) und Azimuth (A) wird das sog. Polar-Dreieck wird gebildet durch den Himmelspol (N), den Zenit (Z) und ein Himmelsobjekt (O).

Im Polardreieck sind die Abstände (Bogenlängen):

  • vom Himmelspol zum Zenit: 90° – φ
  • vom Himmelspol zum Himmelsobjekt: 90° – δ
  • vom Zenit zum HImmelsobjekt: z = 90° – h

Im Polardreieck sind die Winkel an den Ecken des Dreiecks:

  • Winkel am Himmelspol: Stundenwinkel t (oder τ)
  • Winkel am Zenith: 180°  – A   (A = Azimuth von Süden)

Link: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen

MIt dem Seiten-Cosinussatz errechnet man den Cosinus der Länge einer Seite aus den Längen der beiden anderen Seiten und dem gegenüberliegenden Winkel:
\(\cos z = \cos (90° – \phi) \cos (90° – \delta) + \sin (90° – \phi) \sin (90° – \delta) \cos t\)

Was schließlich heisst:
\(\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t \)

Der Cotangens-Satz im Polardreieck sagt:

\(   \cos (90° – \phi)  \cos t = \sin(90° – \phi) \cot (90° – \delta) – \sin t \cot(180° – A)  \)

Trigonometrisch umgeformt ergibt das:
\(  \sin \phi \cos t = \cos \phi \tan \delta – \Large\frac{\sin t}{\tan A}  \)

Aufgelöst nach A ergibt sich:

\(   \tan A = \Large\frac{\sin t}{\sin \phi \cos t – \cos \phi \tan \delta} \)

MIt Hilfe dieser Koordinatentransformation kann man für jedes bekannte Himmelsobjekt (Deklination und Rektaszension) die scheinbare tägliche Bewegung am Himmel berechnen – siehe dazu: Die scheinbare tägliche Bewegung der Gestirne.

 

https://drive.google.com/file/d/1KsWze0RuemuXoe755Z_glIkhA2pTGilH/view?usp=drive_web

Astronomie: Tägliche Bewegung der Himmelsobjekte

Gehört zu: Sonnensystem
Siehe auch: Tageslänge, Sphärische Trigonometrie
Benötigt: WordPress Latex-Plugin

Tägliche scheinbare Bewegung der Gestirne

Wenn wir wissen wollen, wie sich ein Himmelobjekt mit bekannter Rektaszension und Deklination im Laufe des Tages über den Himmel bewegt, so ist die einfache Formel:

  • Stundenwinkel = Sternzeit – Rektaszension
  • Deklination = const.

Damit haben wir die äquatorialen Koordinaten Stundenwinkel (t) und Deklination (δ) als Funktion der Sternzeit.

Wenn wir die azmutalen Koordinaten Höhe (h) und Azimuth (A) haben wollen, so müssen wir das wie folgt umrechnen:

(Quelle: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen )

\( \sin h = \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos t \)

und

\( \tan A = \Large \frac{\sin t}{\sin \phi \cdot \cos t – \cos \phi \cdot \tan \delta}  \)

Beispiel Wega in Hamburg:

Astronomie: Kosmologie

Gehört zu: Astronomie
Siehe auch: Mathematik, Physik, Diagramm, Teilchenphysik, Entfernungsbestimmung, Relativitätstheorie
Benötigt: WordPress Latex-Plugin

Kosmische Hintergrundstrahlung

Am 15.5.2018 nahm ich an einem Gesprächskreis über die “CMB” (Cosmic Microwave Background radiation)  teil.

Themen waren u.a.:

  • Wie kommt es, dass die kosmische Hintergrundstrahlung (CMB) heute bei uns aus allen Richtungen gleichmäßig (“isotrop”) ankommt?
  • Kann die Fluchtgeschwindigkeit von Galaxien bzw. die Expansionsgeschwindigket des Raumes schneller als die Lichtgeschwindigkeit sein?
  • Woher kommt die Rotverschiebung der Galaxien?

Stichwörter

Da fielen eine Reihe von Stichwörtern, die mir nicht so geläufig waren:

  • Minkowski-Raum d.h. ohne Gravitation  –> Minkowski-Diagramm
  • Friedmann Gleichung
  • Robertson-Walker-Metrik
  • Roger Penrose “CCC”
  • Steinhardt Princeton

Entfernungen im Universum

In der Kosmologie hat man zwei verschiedene Maße für Entfernungen im Universum (Davis & Lineweaver 2004):

Proper Distance: Entfernung eines Objekts zu einem bestimmten Zeitpunkt. Wegen der Expansion des Universums ändert sich die “Proper Distance” mit der Zeit.

Comoving Distance: Entfernung eines Objekts, die sich mit der Zeit nicht ändert – also die Expansion des Universums “herausgerechnet”. Die “Comoving Distance” wird definiert als identisch der “Proper Distance” zum jetzigen Zeitpunkt. Man spricht auch vom sog. Skalenfaktor a(t), der sich im Laufe der Zeit ändert. Zur Zeit t=heute ist a(heute)=1.

Rotverschiebung

In den Spektren von vielen Galaxien kann man eine Verschiebung der Linien zum Roten hin beobachten.

Als Rotverschiebung z definiert man den Quotienten der Differenz zwischen der Wellenlänge im Beobachtersystem (obs) und derjenigen im Emittersystem (em):

\(\displaystyle z = \frac {\lambda_{obs} – \lambda_{em}}{\lambda_{em}} \)

Edwin Hubble (1889-1953) interpretierte die Rotverschiebung z als Dopplereffekt hervorgerufen durch eine Fluchtgeschwindigkeit v der Galaxien.

\(\displaystyle z = \frac{v}{c} \)

Edwin Hubble konnte 1929 nachweisen, dass diese Fluchtbewegung mit der Entfernung D der Galaxien zunimmt.  Es waren zwar nur 18 Galaxien, die Hubble untersuchte, doch mit wachsender Zahl hat sich dieses Ergebnis bestätigt. Dieser Zusammenhang ging als Hubble-Effekt in die Kosmologie ein und wird auch zur Entfernungsbestimmung benutzt.

\(\displaystyle v = H_0 D \)

Das Hubble-Gesetz zeigt einen linearen Zusammenhang zwischen Fluchtgeschwindigkeit v und der Distanz D mit einer Proportionalitätskonstante, der Hubble-Konstanten H0. Die Linearität hat jedoch nur im nahen Universum ihre Gültigkeit, nämlich bis zu einem maximalen Abstand von gut 400 Mpc oder z  kleiner als 0,1. Für weiter entfernte Objekte bricht die Linearität zusammen.

Bei größeren Geschwindigkeiten (d.h. relativ zur Lichtgeschwindigkeit) müssen zusätzlich die relativistischen Effekte berücksichtigt werden. Das erfolgt aber erst weiter unten durch in den Abschnitten “Robertson-Walker-Metrik” und die “Friedmann-Gleichung”.

Die Hubble-Konstante / Hubble-Parameter

Nach Edwin Hubble (1889-1953)  beschreibt die nach ihm benannte Hubble-Konstante, die gegenwärtige Expansionsgeschwindigkeit des Universums.

Messungen zu Beginn des 21. Jahrhunderts ergaben Werte zwischen \(68 \frac{km}{s \cdot Mpc}\) und \(74 \frac{km}{s \cdot Mpc}\) .

Aus der Wikipedia https://de.wikipedia.org/wiki/Hubble-Konstante können wir entnehmen:

Unter Verwendung von Daten des Spitzer-Weltraumteleskops, basierend auf Beobachtungen im 3,6-μm-Bereich (mittleres Infrarot) zur Neukalibrierung der Cepheiden-Distanzskala, erhielten die Wissenschaftler des Carnegie Hubble Programs neue, hochgenaue Werte für die Hubble-Konstante. Dadurch konnte dieser nun um einen Faktor 3 genauer bestimmt werden. Er beträgt (74,3 ± 2,1) km/(s·Mpc). Damit hat die Hubble-Konstante nur noch eine Unsicherheit von drei Prozent (Stand 16. August 2012).

\({\displaystyle H_{0}\approx (74{,}3\pm 2{,}1)\ {\frac {\mathrm {km} }{\mathrm {s\cdot Mpc} }}} \)

Die Hubble-Sphäre ist der um den Beobachter gedachte kugelfömige Teil des beobachtbaren Universums ausserhalb dessen sich Objekte aufgrund der Expansion des Universums mit Überlichtgeschwindigkeit entfernen.

Der “proper” Radius einer Hubble-Sphäre (genannt Hubble-Radius oder Hubble-Länge) beträgt: \(  \Large \frac{c}{H_0} \)

Minkowski  (Raum, Diagramm, Metrik)

Hermann Minkowski (1864-1909) war Mathematiker und lehrte an den Universitäten Bonn, Königsberg, Zürich und hatte schließlich einen Lehrstuhl in Göttingen. In Zürich war er einer der Lehrer von Albert Einstein.

Auf Minkowski geht die Idee zurück, die Welt (wie Lorenztranformation und Spezielle Relativitätstheorie) als einen nicht-euklidischen vierdimensionalen Raum zu verstehen. Wobei er mit  anschaulichen Bildern (grafischen Darstellungen) anstatt mit schwerer verständlichen Formeln arbeitete.

Zwei Begriffe kommen sofort bei “Minkowski” ins Gespräch:

  • Minkowski-Raum
  • Minkowski-Diagramm

Der Minkowski-Raum ist eine “größere Geschichte”: Ein vierdimensionaler Raum mit einer speziellen Metrik, denn in einem Raum möchte man ja Abstände zweier Punkte messen, Länge von Vektoren, Winkel und Flächen bestimmen.  Eine solche Metrik kann man beispielsweise durch ein Skalarprodukt von Vektoren definieren.
Eine einfache Definition der Metrik im Minkowski-Raum ist gegeben durch (“Linienelement”):

ds²  = c² dt² – (dx² + dy² + dz²)

Soetwas schreiben die Oberspezialisten gern als einen Tensor, auch “metrischer Tensor” genannt:  \( ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu}\) (bei einem Tensor wird “implizit” summiert.)

Ein Minkowski-Diagramm ist eine ganz einfache grafische Darstellung, nämlich ein rechtwinkliges zweidimensionales Koordinatensystem mit einer Zeitachse und einer Raumachse (also der dreidimensionale Raum auf eine Dimension vereinfacht) .
Beobachter, die sich mit konstanter Geschwindigkeit bewegen (Inertialsysteme) haben dann als sog. “Weltlinie” eine Gerade.

Weltlinie eines Photons

Wenn man auf der Ordinate nicht die Zeit selbst, sondern c*t aufträgt, wird die “Weltlinie” eines Photons die 45° Gerade.

Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit einer durch das Linienelement

ds²  = c² dt² – (dx² + dy² + dz²)

definierten Metrik, wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) sehr einfach grafisch darstellen.

Expandierendes Universum

In einem expandierenden Universum kann man eine Metrik definieren durch ein Linienelement:

ds²  = c² dt² – a²(t) (dx² + dy² + dz²)

Mit a(t) als sog. Expansionsfaktor, auch “Skalenfaktor” genannt.

Robertson-Walker-Metrik

Durch die Forderung nach Isotropie erhält man aus den Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie (ART) das Robertson-Walker-Linienelement

\( {\displaystyle \mathrm {d} s^{2}=c^{2}\mathrm {d} t^{2}-a(t)^{2}R_{\mathrm {C} }^{2}\left({\frac {\mathrm {d} x^{2}}{1-k\ x^{2}}}+x^{2}\mathrm {d} \Omega ^{2}\right)\ ,} \)

wobei der Krümmungsparameter k = + 1 , 0 , − 1 ist und \( {\displaystyle x=r/R_{\mathrm {C} }}\) .

Friedmann Gleichung

Zur sog. Friedmann-Gleichung können wir der Wikipedia (https://de.wikipedia.org/wiki/Friedmann-Gleichung) folgendes entnehmen:
\( \displaystyle \frac{\dot a}{a}=H(t) \)

und

\( \displaystyle \frac{\dot a}{a}=H_{0}(\frac{\Omega_{m0}}{a^3}+(1-\Omega_{m0}))^{\frac{1}{2}} \)

Wobei hier die sog. Hubble-Konstante H, die ja nicht wirklich konstant ist, vorkommt. In neuerer Zeit wird statt “Hubble-Konstante” auch der Begriff “Hubble-Parameter” verwendet.

Omega M = Anteil an Materie (barionisch und dunkle)

Omega groß Lambda = Anteil an dunkler Energie

Omega rad = Anteul Strahlungsenergie

k = Krümmung

Link: https://www.spektrum.de/lexikon/astronomie/friedmann-weltmodell/136

Notizen zum Vortrag im DESY am 6.2.2020

CMB = Cosmic Microwave Background Radiation, also die Hintergrundsrahlung

Heute messen wir eine Plancksche Schwarzkörperstrahlung von 2,7 K  isotrop

Entdeckt wurde die CMB zufällig (als Störstrahlung) von Wilson & Penzias bei den Bell Labs New Jersey. Sie erhielten den Nobelpreis dafür.

Gleichzeitig haben Astrophysiker im nahe gelegenen Princton das Big-Bang-Modell mit einem mathematischen Modell dargestellt. Dieses Modell sagte eine kostmische Hintergrundstrahlung voraus. Man musste so eine Strahlung nur noch praktisch nachweisen.

Am Anfang war demnach ein “Big Bang”. Das Universum bestand aus sehr heißem Plasma (1032 Kelvin) und kühlte dann aber ab.
Das Universum bestand aus Materie (Protonen und freien Elektronen) sowie aus Strahlung (Photonen).
Die Photonen konnten nicht herausfliegen, weil sie extrem oft mit den freien Elektronen kollidierten.

Solange die Temperatur schön heiß war, konnten die freien Elektronen nicht dauerhaft an die Protonen gebunden werden. Die Bindungsenergie eines Elektrons im Wasserstoffatom liegt bei 13,6 eV, was so ca. einer Temperatur von 3000 K entspricht. Erst bei einer Abkühlung auf ca. 3000 K konnten dann die freien Elektronen an Protonen gebunden werden und sich so neutrale Wasserstoffatome bilden. Man nennt dieses “Rekombination” (obwohl es ja keine “erneute Kombination” war – aber der Begriff ist historisch). Nun gab es nur noch wenige freie Elektronen und der Weg war frei für die Photonen das Plasma zu verlassen.

Damit gab es zum ersten Mal “Licht” im Universum. Modellrechnungen ergaben, das diese “Rekombination” so etwa 380000 Jahre nach dem Urknall geschah.

Genauere Messungen der CMB wurden später mit Erdsatelliten gemacht.

1989-1993 COBE – Cosmic Background Explorer

2001-2010 WMAP – Wilkinson Microwave (im Lagrangepunkt L2)

2009-2013 ESA Planck-Mision (im Lagrangepunkt L2)

Der Satellit COBE hat die CMB bei verscheidenen Frequenzen gemessen und so sehr genau die Kurve eines Planckschen schwarzen Stralers erhalten. Die Temperatur dieses Schwarzen Strahlers (Mikrowellenhintergrund) beträgt 2,735 K

Noch genauere Messungen durch WMAP und Planck zeigten in verscheidenen Richtungen minimale Schwankungen dieser Temperatur.

CMB Temperatur Fluktuationen gemessen vom WMAP

Wenn man aus diesen minimalen Schwankungen (Frequenz bzw. Temperatur) die bekannten Bewegungen (Milchstraße, Sonne etc.) herausrechnet, bleiben relativ gleichmäßg verteilte kleinste Temperaturschwankungen übrig, von denen man das sog. “Leistungsspektrum” (Stärke der Schwankung in Abhängigkeit von der Winkelausdehnung) analysiert.

Die Astrophysiker haben ein mathematisches Modell entworfen, das die Entwicklung des Universums seit dem Urknall beschreibt. Mit Hilfe der Methode der kleinsten Quadrate kann man die Modellparameter, die die beste Passung ergeben bestimmen. Das ganze nennt sich “Lambda-CDM-Modell”, was auch als “Standardmodell der Kosmologie” bezeichnet wird.

Zu den Modellparametern dieses Standardmodells gehören:

  • Anteil der baryonischen Materie:  4,9%
  • Anteil der “dunklen” Materie:       26,8%
  • Anteil der “Dunklen Energie”:       68,3%
  • Hubblekonstante…

Das Alter des Universums ergibt sich zu 13,8 Millarden Jahren.

Stark vereinfachtes Modell

Dies stark vereinfachte Modell habe ich gefunden bei:  http://scienceblogs.de/hier-wohnen-drachen/2010/09/19/wie-gross-ist-das-beobachtbare-universum/

Nur eine Raumkoordinate: x und eine Zeitkoordinate: t

Messung der Zeit in Sekunden, Messung der Raumkoordinate in Lichtsekunden

Szenario 1:

Wir beobachten 7 Galaxien (n = 1, 2, …, 7), die sich vom Beobachter mit Fluchtgeschwindigkeit entfernen.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung vom Beobachter: \( x_n(0) = n \)
  • Fluchtgeschwindigkeit bezogen auf den Beobachter: \( \dot x_n(0) = \Large \frac{n}{4} \)
  • Wir haben also zum Zeitpunkt t=0 eine Hubble-Konstante von \(  H(0)= \Large \frac{\dot x(0)}{x(0)} = \large 0,25 \)

Differentialgleichung (Bewegungsgleichung): \( \dot x_n(t) = \Large \frac{n}{4} \)

Lösung: \( x_n(t) = \Large \frac{n}{4} t + n \)

Damit wäre der Hubble-Parameter in unserem “Vereinfachten Modell”:
\( H(t) = \Large \frac{\dot x}{x} = \frac{\Large \frac{n}{4}}{\Large \frac{n}{4} \cdot t + n} = \Large \frac{1}{t+4} \)

Raum-Zeit-Diagramm der 7 Galaxien

Szenario 2:

Zusätzlich zu Szenario 1 wird zum Zeitpunkt t=0 ein Lichtsignal von Galaxis 7 in Richtung des Beobachters gesendet.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung des Signals vom Beobachter: x(0) = 7
  • Geschwindigkeit des Signals in Bezug auf den Beobachter: v(0) = c – Fluchtgeschwindigkeit der Galaxie 7 also v(0) = 1 – (7/4) = – (3/4)

Bewegungsgleichung des Lichtsignals:

  • v(t) = c – Fluchtgeschwindigkeit (x,t)
  • \(  \dot x = 1 – \Large \frac{x}{t + 4}  \)

7 Galaxien und ein Lichtsignal