Astrofotografie: Bildbearbeitung

Gehört zu: Astrofotografie
Siehe auch: Bildbearbeitung mit Photoshop, Bildbearbeitung mit GIMP, Schärfen, Wavlets, Lucky Imaging
Benutzt: Fotos von Google Archiv

Stand: 06.06.2021

Elektronische Bildbearbeitung (EBV) – Image Processing

Als Einsteiger in die Astrofotografie möchte ich mit einfachem Equipment Astrofotos machen, auf denen auch lichtschwache Objekte zu sehen sind, um eigene “Pretty Pictures” von eindrucksvollen Objekten zu erzielen, die man mit bloßem Auge gar nicht sehen kann.

In vielen Fällen sind längere Belichtungszeiten sinnvoll, sodass man sich mit der Kunst der Nachführung auseinandersetzen muss; wobei die Lichtverschmutzung der Belichtungszeit auch Grenzen setzen wird.

Die Ausbeute an Bildern einer Astro-Nacht wird man tags darauf sichten, speichern und bearbeiten (“stacking” und “post processing”) müssen; d.h. wir können dann verschiedene Funktionen und Techniken der elektronischen Bildverarbeitung anwenden.

Generelles

Farbtiefe – 8 Bit – 16 Bit – 32 Bit

Wenn eine Kamera das Signal nur mit 8 Bit digitalisiert, wären das 2 hoch 8 = 256 verschiedene Stufen. Das ist sehr wenig. Bei einer Digitalisierung von 16 Bit hätte man 2 hoch 16 = 65536 verschiedene Stufen. Das wäre sehr viel besser, um die Feinheiten eines Astro-Fotos darzustellen.

Das JPEG-Format hat leider nur 8 Bit; es ist also sehr zu raten, die Kamera so einzustellen dass die Bilder im RAW-Format abgespeichert werden; dann ist die Farbtiefe z.B. bei der Canon EOS 600D schon 14 Bit (also 2 hoch 14 = 16385 Stufen). Das ist in jedem Fall besser als JPEG.

Wenn ich ein Bild per Software bearbeite, sollte in den einzelnen Bearbeitungsschritten keine Information verloren gehen; daher sollten Bildverarbeitungsprogramme mindestens 16 Bit unterstützen – besser noch 32 Bit (4294967296 Stufen). Wenn das Bild am Ende der Bearbeitung in 16 Bit gespeichert wird, ist das schon OK.

Aufnehmen von Planeten vs. Deep Sky Objekten (“DSOs”)

Grundsätzlich wird man unterschiedliche Anforderungen an die Astrofotografie haben bei

  • Mond und Planeten (und Sonne)                                        –> Aufnahme mit Software FireCapture
  • Nebel und Galaxien  (sog. “Deep Sky Objekte” = “DSO”)     –> Aufnahme mit Software APT

Bei ersterem (Mond, Planeten, Sonne) geht es eher um Detailverstärkung ( = Schärfen) evtl. auch um Kontrastreduzierung

Bei letzterem (Nebel und Galaxien) wird man nach einer Kontrastvertärkung (durch Stretchen und eine S-Kurve) besonders das Rauschen wieder unterdrücken wollen und vielleicht in Teilbereichen (dazu brauchen wir Masken) feine Strukturen besser herausarbeiten wollen.

Funktionen der Bildbearbeitung für Planeten

Da die Objekte eigentlich hell sind aber klein, wird ein Öffnungsverhältnis von f/20 empfohlen. Die kleinsten Details sollen 2 Pixel groß sein. Wenn die Pixel  ganz klein sind, käme man auch mit f/10 oder so aus.

Bei Planeten und Mond ist ganz besonders die Luftunruhe (das sog. “Seeing“) ein Hauptproblem.

Die gängige Technik gegen schlechtes Seeing ist das sog. “Lucky Imaging“, wobei man ein Video aufnimmt (also viele Einzelbilder mit kurzer Belichtungszeit)  und dann später aus dem Video diejenigen Einzelaufnahmen “Frames” benutzt, die am wenigsten durch schlechtes Seeing (Luftunruhe) beeinträchtigt sind.

Beliebte Software für dieses Lucky Imaging ist AutoStakkert. Auch Registax könnte man dafür nehmen.
Pionier auf diesem Gebiet war Georg Dittie mit seiner bahnbrechenden Software Giotto (Version 1.0 im Jahre 2000).

Nachdem man dem schlechten Seeing soweit ein Schnäppchen geschlagen hat, wird man das Bild dann häufig noch etwas Schärfen wollen.

Funktionen der Bildbearbeitung für DSOs

Ich bin durch Videos von Nico Carver auf Youtube darauf gekommen, mal etwas ausführlicher die Vorgehensweise (Workflow) bei meiner DSO-Astro-Fotografie zu beschreiben.

1. Stacking – Summenbild – Signal Noise Ratio (SNR)

Bei der Astrofotografie von DSOs macht man viele Einzelaufnahmen (“Frames”, “Sub-Exposures”), die man dann “Stacken” muss.
Die Summe der Einzelbelichtungszeiten addiert sich dann zur Gesamtzeit, der sog. Integrationszeit. Effektiv erhält man also eine längere Belichtungszeit. Das ist hilfreich z.B. wenn:

  • Ich nur kurze Zeit nachführen kann, aber eigentlich eine längere Belichtungszeit benötige
  • die Himmelshelligkeit die maximale Belichtungszeit für eine Einzelaufnahme begrenzt

Eine längere Belichtungszeit erhöht vordergründig das Lichtsammelvermögen (durch Addition). Tatsächlich ist es aber das Signal-Rauschverhältnis (Signal Noise Ratio =SNR)  was verbessert wird, weil das Rauschen stochastisch ist und damit “weggemittelt” werden kann.

Zusätzlich zu den eigentlichen Einzelbildern des Beobachtungsobjekts (den sog. Light Frames) nimmt man zur Optimierung und Korrektur noch sog. Kalibrierungsbilder auf: Dark Frames, Flat Frames und Bias Frames, welche alle von der Stacking-Software zu einem Summenbild verarbeitet werden.

Software zum Stacken:

Was sollte man beim Stacken beachten?

  • Wie werden die Aufnahmen (Frames) richtig “gestackt”?
  • Wie das mit der Software Deep Sky Stacker (DSS) geht, beschreibe ich im separaten Artikel über DSS.
  • Wie das mit der Software SiriL geht, beschreibe ich im separaten Artikel über SiriL
  • Wie das mit Astro Pixel Prozessor geht, beschriebe ich im separaten Artikel über APP
  • Links zum Stacking:  http://lightwatching.de/astrofotografie-mit-der-dslr-teil-2-richtig-stacken/

2. Rand abschneiden

Nach dem Stacking hat man oft einen kleinen schwarzen Rand um das Bild, weil vielleicht eine kleine Verschiebung der Bilder mit im Spiel war. Diesen kleine Rand sollten wir abschneiden, da er nicht zum “Nutzsignal” gehört und z.B. das Histogramm auf der linken Seite verfälscht.

Sehr einfach kann man das mit der kostenlosen Software Fitswork machen oder auch mit Photoshop.  (Werkzeug “Crop”)

3. Farbkorrektur / Color Calibration

Wenn das Histogramm unterschiedliche Spitzen für die Farbkanäle (Rot, Grün oder Gelb) anzeigt, kann man diese zur Deckung bringen und so grobe Farbstiche korrigieren.
Das kann man sehr einfach mit der Software Fitswork machen.

Bei der Farbkalibrierung kommt es darauf an, was man als Bezugspunkt nimmt. Als Bezugspunkt nimmt man im einfachsten Fall eine “neutrale” Stelle im Hintergrund. Der Hintergrund selbst könnte aber schon verfälscht sein. Die bessere Farbkalibrierung geht deswegen vom sog. B-V-Index der Sterne aus, das kann entweder ein manuell im Bild identifizierter Stern sein, dessen B-V-Index man kennt oder man identifiziert die Sterne im Bild durch Plate Solving und holt sich dazu die B-V-Indices als Sternkatalogen herunter. Software mit sog. “astrometrischer” Farbkalibrierung; d.h. über Platesolving und B-V-Indices:

4. Lichtverschmutzung entfernen – Background Extraction – Gradienten entfernen

Das gestackte Farb-Bild muss zunächst farblich bearbeitet werden (so etwas wie Farbkalibrierung) und dann können wir den Hintergrund (d.h. die Lichtverschmutzung und ggf. Gradienten) entfernen.
Mit Adobe Photoshop geht das so:

Quelle: Nico Carver: How to capture a Galaxy with your DSLR

Stretchen und RGB-Farben kalibrieren

Um genau zu sehen, was wir da machen, zeigen wir erst einmal das Histogramm mit den RGB-Kanälen an. Voraussetzung für die Farbkalibrierung ist, das alle drei Farbkanäle im Histogramm gut vom linken Rand abgelöst sind (also: lange genug belichten).

Dann stretchen wir die einzelnen RGB-Farbkanäle so, dass sie alle in etwa gleich breit sind und an der gleichen Stelle im Histogramm stehen (abgelöst vom linken Rand). Das machen wir in Adobe Photoshop mit dem Befehl “Bild (Image) -> Korrekturen (Adjustments) -> Tonwertkorrektur (Levels)” aussehen.

Ausschnitt: Croppen und nochmals Farben korrigieren

Im ganzen Bild können jetzt sehr hässliche Gradienten erscheinen. Wenn wir nun den interessanten Bildausschnitt “croppen”, werden die Gradienten weniger werden und auch die Vignettierung wird weniger schlimm. Durch das “croppen” werden sich die RGB-Kanäle im Histogramm wieder verändern.  Wir müssen erneut durch Levels die RGB-Kanäle anpassen (wie oben).

Hintergrund extrahieren

Das so erzielte Bild können wir nun benutzen, um den Hintergrund zu extrahieren und dann abzuziehen. Das geht so:

  • Kopieren des gegenwärtigen Fotos als separates Foto: Select All, Edit Copy, File New, Edit Paste. Somit haben wir ein neues Foto, dass wir auf den Hintergrund reduzieren können.
  • Nun bearbeiten wir dieses neue Foto so, dass die Sterne entfernt werden und nur noch der Hintergrund sichtbar ist. Das geht in Adobe Photoshop mit: Filter -> Noise -> Dust & Scratches. Dabei nehmen wir als Radius 128 und als Threshold 0. In der Mitte des Bildes ist durch das Objekt noch eine leichte Aufhellung vorhanden, die wir aber gleich separat entfernen. Das machen wir mit dem Klone Stamp Tool (Opacity 85%) auf Taste “Alt” drücken, um einen kleinen repräsentativen Bereich aufzunehmen und diesen dann mit einigen Klicks über dem Objekt bringen, um dieses auszublenden.
  • Wenn das noch nicht schön glatt aussieht, können wir noch den Filter “Gaussian Blur” mit einem großen Radius (z.B. 160) darüber laufen lassen. Nun haben wir ein schönes weiches Bild von unserem Hintergrund. Dieses Bild vom Hintergrund müssen wir nun abspeichern: File -> Save As…

Hintergrund abziehen:

Nun zurück zum eigentlichen Foto. Dort wollen wir nun von unserem Foto den Hintergrund (also: Lichtverschmutzung, Gradienten, Vignettierung) abziehen.

  • Zur Sicherheit machen wir im eigentlichen Foto eine Kopie als Layer
  • Dann gehen wir auf “Image -> Apply Image”
    • Dabei müssen wir als “Source” das zweite Bild (das mit dem geglätteten Hintergrund) angeben.
    • Und den “Blending Mode” müssen wir auf “Subtract” umstellen.
    • Dann setzten wir “Scale” auf 1  (Empfehlung von Nico Carver)
    • und “Offset” zwischen 30 und 100 z.B. auf 60   ( Null ergibt ein sehr dunkles Bild, 200 ein sehr helles Bild). IM Zweifelsfall sollte das Bild ruhig etwas heller (grauer) als was als schön empfunden wird eingestellt werden. Es ist ja “nur” ein Zwischenschritt wobei hier keine Details verloren gehen sollten.
    • Nun lösen wir die Subtraktion aus durch die Schaltfläche “OK”
  • Wir kontrollieren nocheinmal die RGB-Farben im Histogramm (“Levels”); ggf. machen wir kleine Anpassungen
  • Dann setzen wir den Blacklevel im RGB-Histogramm (linker Schieber) leicht an den Beginn des Gebirges heran.
  • Fertig

Luminanzmaske

Mit einer Luminanzmaske kann man selektiv “Vordergrund” und “HIntergrund” unterschiedlich bearbeiten.
Z.B. einerseits die Farbsättigung und Helligkeiten der Sterne und des Objekts “hochziehen” ohne das der Background noch schrecklicher wird; andererseits, wenn man sie invertiert, gerade beim Background  die Farben “Entsättigen”, ohne den “Vordergrund” zu beeinträchtigen.

Wie erstellen wir zu unserem Bild nun in Adobe Photoshop eine Luminanzmaske?

Wir duplizieren den Layer (Ebene) nochmals (Ctrl J)

Umwandeln in Graustufen: Image -> Adjustments -> Black & White -> OK

Agressiv die Grautöne abstufen, bis der Hintergrund ganz schwarz ist und die Sterne und die Galaxis ganz weiss sind.

Nun können wir dieses Bild als Maske verwenden.

Wir fügen zur obersten Ebene einen “Adjustment Layer” hinzu und zwar “Hue/Saturation”. Dadurch entsteht im obersten Layer eine Maske, die aber ganz weiss ist.

5. Vignettierung entfernen

Sehr einfach kann man eine Vignettierung mit der kostenlosen Software Fitswork entfernen.

6. Gradienten entfernen – Hintergrund ebnen – Background Extraction

Der Bildhintergrund sollte im Idealfall einen gleichmäßig dunklen Himmel zeigen. Wenn es da aber einen Helligkeitsverlauf gibt (z.B. oben dunkler, unten heller), spricht man von einem Gradienten (Farbverlauf).

Mit Fitswork lässt sich so ein Gradient relativ leicht entfernen.

Wenn der Helligkeitsverlauf im Himmelshintergrund etwas komplexer ist, reicht es nicht aus mit Gradienten zu arbeiten. Dann ist eine sog. “Background Extraction” angezeigt. Auch das kann oft ganz leicht mit der Software Fitswork gemacht werden.

7. Stretching – Histogramm

Spreizen – Streckung – Abschneiden – Gradationskurve – Gamma

Die Bearbeitung des Histogramms kann durch Software wie Fitswork, GIMP, Photoshop o.ä. erfolgen. Wichtig ist, dass die Software dafür eine 16 Bit Digitalisierung benutzt.

Der Sensor einer Digitalkamera hat eine gut lineare Charakteristik d.h. wenn doppelt soviele Photonen eintreffen, werden doppelt so viele Elektronen erzeugt. Wenn man nun das Histogramm bearbeitet, unterscheidet man zwischen linearem Stretching und nicht-linerarem Stretching. Solange die Linearität erhalten bleibt sind wissenschaftliche Auswertungen möglich, wenn nicht-linear gearbeitet wird, kommen wir in den Bereich der “Pretty Pictures“.

Alles, was man im Histogramm manipuliert, kann auch mit einer Manipulation der Gradationskurve erreichen.

Der linke Regler beim Histogramm setzt “fast schwarze” Pixel auf “ganz schwarz”; d.h. es wird links abgeschnitten (“geclippt”).

Der rechte Regler schneidet die ganz hellen Pixel ab, sodass das verbleibende Bild heller und kontrastreicher wird. Gravierender Nachteil ist, dass im Bereich der helleren Sterne Information verloren geht; man sieht ein “Ausblühen” der Sterne. Im Normalfall muss der rechte Regler also völlig Tabu sein.

Der mittlere Regler beim Histogramm ist etwas dubios. Man kann damit die Gradationskurve anheben oder absenken.
Wenn man nur diesen mittleren Regler bewegt (und nicht den linken und nicht den rechten), dann sieht man, dass dadurch die Gradationskurve genau in der Mitte angehoben (Fitswork: Regler nach rechts) oder abgesenkt (Fitswork: Regler nach links) wird.

Experten empfehlen folgende Vorgehensweise:

  1. Linken Regler nach rechts an das “Gebirge” vorsichtig heranfahren  (Achtung: nichts abschneiden)
  2. Rechten Regler so lassen, wie er ist.
  3. Mittleren Regler etwas “aufdrehen” (Fitswork: nach rechts)  so etwa in den rechten Anfang des “Gebirges” fahren
  4. Abspeichern
  5. Punkte 1-2-3 wiederholen, ggf. mehrfach…

8. Kontrastverstärkung – Gamma-Kurve

Am Anfang liefert unsere Kamera eine lineare Kontrastkurve. Kontrastverstärkung kann durch eine leichte S-Kurve im “Curves Tool” (Adobe Photoshop) erfolgen.

9. Rauschunterdrückung – Rauschreduzierung – Glättung

Siehe auch: Wavelets

Rauschfilterung wird auch als “Glätten” (z.B. bei Fitswork) oder auch als “Weichzeichner” bezeichnet.

Das Rauschen bedeutet Helligkeitsunterschiede in Flächen, die eigentlich einfarbig sein sollten, und ist in dunklen Bereichen meist am deutlichsten wahrnehmbar.

Bildrauschen entsteht, wenn das Licht nicht ausreicht, um das Bild ausreichend zu belichten.

Man kann dann den sogenannten ISO-Wert erhöhen. Dieser hellt das Bild auf, verursacht aber seinerseits auch Bildrauschen.

Deep Sky Objekte (DSO)

Bei Deep-Sky-Aufnahmen ist es ja eigentlich immer so, dass “das Licht nicht ausreicht” – man hat also immer irgendwie mit “Rauschen” zu tun.

Allerdings wird man sich bei DSOs als erstes mal mit dem Stretchen beschäftigen, um mehr Detail aus den lichtschwachen Objekten herauszubekommen (was hat Stretchen mit dem Begriff “Kontrastverstärkung” zu tun? Mir hat das noch keiner erklärt.).

Durch das Stretchen hat man auch das Rauschen verstärkt, was man im zweiten Schritt dann “entfernen” oder Reduzieren möchte.

Ich habe das in einem ersten Anlauf mal mit Adobe Photoshop versucht:

Quelle: https://praxistipps.chip.de/photoshop-bildrauschen-entfernen-die-besten-tipps_38993

  • Ein DSO-Bild nach dem Stacken und Stretchen als 16-Bit in Photoshop geladen
  • Dann: Menüleiste –> Filter –> Camera Raw-Filter
  • Bei den “Grundeinstellungen” auf das dritte Symbol von links (zwei Dreiecke) klicken
  • Dort gibt es “Schärfen” und Rauschreduzierung”. Schärfen will ich nicht;
    • bei Rauschreduzierung drehe ich den Luminanz-Schieber sehr weit nach rechts. Das bewirkt eine starke Rauschreduzierung
    • Luminanzdetails bedeutet, welcher welcher Luminanzbereich von der Rauschreduzierung verschont bleiben soll. Den stelle ich auf Null, weil ich die volle Wirkung der Rauschreduzierung sehen möchte.

Zweiter Versuch mit Photoshop

Quelle: https://www.netzwelt.de/news/108131_2-photoshop-so-entfernen-bildrauschen.html

Die besten Ergebnisse erreichen Sie mit dem Filter “Rauschen reduzieren”. Diesen finden Sie im Menü unter “Filter” → “Rauschfilter”.

Abbildung 1: Photoshop-Menüleiste – Filter – Rauschfilter (Google Archiv: photoshop-01.jpg)

photoshop-01.jpg

Photoshop Rauschfilter

In einem Dialogfeld mit Miniaturansicht nehmen Sie Ihre Einstellungen mithilfe von Schiebereglern oder der Eingabe von Werten vor. Dabei haben Sie folgende Optionen:

  • “Stärke”: Sie reduzieren das Luminanzrauschen gleichzeitig auf den drei Bildkanälen “Rot”, “Blau” und “Grün”.
  • “Details erhalten”: Sie können möglichst viele Bilddetails und Kanten bewahren. Je höher dabei der Wert eingestellt wird, umso mehr Details bleiben erhalten.
  • “Farbrauschen reduzieren”: Mit diesem Regler passen Sie das chromatische Rauschen an.
  • “Details scharfzeichnen”: Durch die Rauschreduzierung treten Schärfeverluste auf, die Sie hier anpassen können.
  • Wenn Sie die Checkbox “JPEG-Artefakt entfernen” aktivieren, versucht Photoshop, pixelige Bildfehler automatisch zu reparieren.

Abbildung 2: Photoshop – Filter – Rauschen reduzieren – Einstellungen (Google Archiv: Flickr photoshop-02.jpg)

photoshop-02.jpg

Photoshop-02: Rauschen reduzieren

Geübte Photoshop-Nutzer können in der Registerkarte “Pro Kanal” ihre Einstellungen kanalweise vornehmen. Für die nächste Bearbeitung speichern Sie Ihre Einstellungen optional im Dialogfenster mit Klick auf das Laufwerkssymbol neben “Einstellungen”.

Weichzeichner

Die beiden Filter “Selektiver Weichzeichner” und “Gaußscher Weichzeichner” verringern Bildfehler durch das Weichzeichnen, eine spezielle Art der Kontraständerung. Mit diesen Filtern arbeiten Sie differenzierter als mit “Rauschen reduzieren” und bewahren mehr Bilddetails. Sie finden beide Filter im Menü unter “Filter” → “Weichzeichnungsfilter”.

Im Dialogfeld des Gaußschen Weichzeichners senken Sie mit dem Schieberegler unter “Radius” den Kontrast benachbarter Pixel. Das Bild wirkt glatter. Stellen Sie jedoch den Radius nicht zu hoch ein, da das die Bildschärfe mindert.

Mit dem selektiven Weichzeichner können Sie neben dem Radius auch den Schwellenwert einstellen. Gehen Sie jedoch auch hierbei behutsam vor. Bei zu starker Weichzeichnung “verschwimmen” die Kanten.

Die Entfernung des Bildrauschens geht immer ein bisschen mit der Reduzierung der Bildschärfe einher. Sie müssen daher je nach Bild entscheiden, inwieweit die Rauschentfernung angewendet werden soll.

Schärfen

Quelle: Erik Wischnewski: Astronomie in Theorie und Praxis, 7. Auflage, S. 172

Unscharf bedeutet, dass Hell-Dunkel-Übergänge sanft verlaufen. Scharf bedeutet, dass diese Übergänge härter (schneller und auf kurzer Strecke) erfolgen.

Schärfungsalgorithmen versuchen also aus einem weichen Übergang einen harten zu machen.

Schärfung darf nicht übertrieben werden. Was im Original nicht scharf ist, kann auch nicht mehr im nachhinein scharf gemacht werden.

Zum Schärfen gibt es spezielle Schärfungsfilter z.B. Iterative Gauß-Schärfung.

Schärfen erhöht das Bildrauschen….

Der Schwellwert des Schärfefilters sollte so klein eingestellt werden, das kleinere Helligkeitsunterschiede beim Schärfen ignoriert werden.

Gezielt nur Teile eines Bildes bearbeiten: Ebenen und Masken

Bei Deep-Sky-Objekten wird man auch das Bedürfnis haben, bestimmte Teile eines Fotos anders zu bearbeiten als andere Teile. Dazu gibt es  einen Ansatz von Ron Wodaski, der sich Vier-Zonen-System nennt:

  1. Der Hintergrund “Zone 1” soll – ohne Rauschen – sehr dunkel sein
  2. Gebiete mit schwachen Nebeln  “Zone 2” haben ein schlechtes Signal-Rausch-Verhältnis (SNR) und können nicht geschäft, sondern nur entrauscht werden.
  3. Gebiete mit stärkeren Nebeln “Zone 3” haben ein gutes Signal-Rausch-Verhältnis (SNR) und sollten geschärft werden.
  4. Die ganz hellen Bereiche “Zone 4” haben ein super-gutes SNR und sollten ebenfalls nicht entrauscht werden…

Hierzu gibt es auf Youtube ein einführendes Video von Frank Sackenheim. Ich habe dann versucht, das Ganze in einem separaten Artikel zu beschreiben.

Man kann das alles sehr gut mit Adobe Photoshop machen.