Astronomie: Motor Fokus

Das Problem: Optimales Fokussieren

Teil von: Meine Geräteliste

Besonders bei der Astrofotografie fällt es unangenehm auf, wenn bei einem mühsam erarbeiteteten Foto die Scharfstellung (Fokussierung) nicht hundertprozentig ist.

Es gibt ja mehrere Methoden, wie man den genauen Fokuspunkt  findet; z.B. Live View mit Bildschirmlupe,  Hartmann-Maske, Bahtinov-Maske,… Es bleibt aber das Problem das jede Berührung des Einstellrades am Okularauszug ( OAZ) das Teleskop ein wenig (oder mehr) zum Wackeln bringt. Um dieses Wackeln zu vermeiden, gibt es Motoren, die man am Stellrad des OAZ befestigt…

Das Lösungsprinzip: Motor Fokus

Eine Motor-Fokus-Lösung besteht aus einem Motor (Schrittmotor oder Gleichstrommotor), dessen Drehachse irgendwie an die Drehachse des OAZ gekoppelt wird. Contine reading

Astronomie: Entfernungsbestimmung

Links

https://libernaturaererum.files.wordpress.com/2012/10/vermessung.pdf

Die Erde

Erste bekannte Bestimmung von Erathostenes (Freund des Archimedes).

Erathostenes beobachtete, das in Syene (heute Assuan) die Sonne bei ihrem Höchststand ganz senkrecht in einen tiefen Brunnen schien – Assuan liegt auf dem Wendekreis. In Alexandria dagegen erreichte die Sonne bei ihrem Höchststand nicht die genaue senkrechte, sondern warf einen kleinen Schatten. Diesen Einfallswinkel der Sonne bestimmte er zu 1/50 eines Kreises, also ca. 7,2 Grad.

Die Entfernung von Alexandria nach Syene war damas durch Landvermessung bekannt, nämlich 5000 Stadien. Also musste der Erdumfang 50 * 5000 Stadien = 250000 Stadien sein. Die Frage ist nur noch, welche Länge hatte damals ein Stadie…

Bild: http://media-2.web.britannica.com/eb-media/49/66649-004-0C10672E.gif

Die Jagd nach dem Meter: Das Urmeter

Umfang der Erde: 40000 km

Aristarch von Samos: Erde – Mond – Sonne

Aristarch von Samos (310-250 v.Chr.) hat versucht, die Entfernungen von Mond und Sonne in Relation zu setzen. Er nutzte dazu die Stellung dieser Gestirne bei Halbmond aus:

Quelle: http://www.venus-transit.de/Halley/aristarch.gif

Aristarch hat den Winkel von Mitte Halbmond zu Mitte Sonne mit 87  “gemessen” (er sagte: “Ein Dreißigstel des Virtelkreises weniger als ein Viertelkreis”). Draus ergibt sich das Verhältnis von Mondentfernung zu Sonnenentfernung wie 1 zu 19.

Die heutigen Zahlen sind:

  • Entfernung Erde – Mond:  384400 km
  • Entfernung Erde – Sonne: 150000 Mio km

Also ist das Verhältnis 1 zu 390.

Hier lag Aristarch also ziehmlich weit daneben. Die Ungenauigkeit ist vielleicht verständlich, weil erstens der Halbmond nicht ganz so scharf zu bestimmenist und zweitens so ein großer Winkel am Taghimmel auch nicht so einfach zu messen ist.

Trotz der – aus heutiger Sicht – großen Ungenauigkeit dieses ersten Versuchs von Aristarch, ist das Ergebnis für die damalige Zeit revolutiomär, denn bis dahin ging man davon aus, dass alle Gestirne am Himmel in etwa die gleiche Entfernung von der Erde haben – die sog. “Himmelskugel”.

Bestimmung der Entfernung Erde – Mond durch Parallaxe

Die Entfernung zum Mond kann durch Messung seiner Parallaxe bestimmt werden.

Dazu nimmt man zwei Beobachter auf möglichst unterschiedlichen geografischen Breiten und möglichst gleicher geografischer Länge….

Unser Sonnensystem

Entfernung Erde – Sonne:  150 Mio km    (Methode: Parallaxe, auch: Venusdurchgang)

Entfernungseinheit: 1 Astronomische Einheit (A.E.) = 150 Mio km – wird benutzt, um Entfernungen innerhalb unseres Sonnensystems zu messen.

Sterne in unserer Nähe: Parallaxe

Durch Parallaxe-Messung zur Basis der Erdbahn, also mittlere Entfernung Erde-Sonne d.h. 150 Mio km.

Entfernungseinheit: 1 Parsec (für Parallaxen Sekunde) – die Entfernung, in der die Paralaxe 1 Bogensekunde beträgt.

 Größe  Wert Einheit  Formel
Basis  1 A.E.
Basis  149,5979 Mio km
Basis  1,495979 1011 m
Winkel  1 Bogensekunde
Winkel  4,8481 10-6 Bogenmass  2 pi / (60*60*360)
Parsec  3,0857 1013 km   Basis / Winkel
Parsec  3,0857 1016 m
Parcec  1  pc

Zum Vergleich: 1 Parsec = 3,259 Lichtjahre.

Sehr gerne wird von Astronomen die daraus abgeleitete Entfernungseinheit “Mega Parsec” verwendet…

Durch genaue Messung der Parallaxe kann mann heute die Entfernungen im Sonnensystem und auch zu den Sternen in der näheren Umgebung bis ca. 300 Lichtjahre messen.

Lichtjahr

Ein Lichtjahr ist die Entfernung, die das Licht (im Vakuum) in einem Jahr zurücklegt.

Die Lichtgeschwindigkeit ist im SI-System festgelegt als: 299.792.458 m/s

 

Größe  Wert Einheit  Formel
Lichtgeschwindigkeit  2,99792458 108  m/s
Jahr  365,25  Tage
Jahr  3,1558 107  Sekunden  Tage*60*60*24
Lichtjahr  9,4607 1015  m  Geschwindigkeit * Zeit
Lichtjahr   1  ly

Das Lichtjahr wird gerne in populärwissenschaftlichem Zusammenhang benutzt.

Beispiel: Milchstraße

Der Durchmesser unserer Milchstrasse beträgt 100.000 Lichtjahre…

Beispiel: Proxima Centauri

Die Entfernung zu unserem nächstgelegenen Fixstern “Proxima Centauri” beträgt: 4,24 ly

Mit einem modernen Verkehrsflugzeug (1000 km/h) würde eine Reise dorthin 4,6 Mio Jahre dauern.

Methode der Delta Cepheiden

Henrietta Swan Leavitt entdeckte 1912  die “Perioden-Leuchtkraft-Beziehung” anhand von Aufnahmen der Kleinen magellanschen Wolke (SMC).

Leuchtkraft ∼ Absolute Helligkeit.

Diese Methode reicht bis knapp zum Virgo-Galaxienhaufen (Entfernung 23 Mpc) und dient so auch der Entfernungsbestimmung extragalaktischer Systeme.

Methode der Standard-Kerzen

Supernovae vom Typ Ia sind eine gute Stardardkerze und können so zur Entfernungsbestimmung benutzt werden.

Die absolute Helligkeit (Helligkeit in einer Entfernung von 10 Parsec) einer Supernova vom Typ Ia lässt sich mit Hilfe der sog. “Phillips-Beziehung” rechnerisch ermitteln.

Wenn wir dann die scheinbare Helligkeit messen, ergibt sich daraus die Entfernung, da ja die scheinbare Helligkeit mit dem Quadrat der Entfernung abnimmt.

Auf diese Weise konnte 1923 die Entfernung des Andromedanebels (M31) ermittelt werden.

Hubble-Konstante

Rotverschiebung

Sonstigen: Im Kleinen

1 Angström = 10 Nano Meter (nm) = 10-10 m

 

Astrofotografie: Bildbearbeitung

Elektronische Bildbearbeitung (EBV) – Image Processing

Als Einsteiger in die Astrofotografie möchte ich mit einfachem Equipment Astrofotos machen, auf denen auch lichtschwache Objekte zu sehen sind, um eigene “Pretty Pictures” von eindrucksvollen Objekten zu erzielen, die man mit bloßem Auge gar nicht sehen kann.

In vielen Fällen sind längere Belichtungszeiten sinnvoll, sodass man sich mit der Kunst der Nachführung auseinandersetzen muss.

Die Ausbeute an Bildern einer Astro-Nacht wird man tags darauf sichten, speichern und nachbearbeiten (“post processing”) müssen; d.h. wir können dann verschiedene Funktionen und Techniken der elektronischen Bildverarbeitung anwenden.

Generelles

Farbtiefe – 8 Bit – 16 Bit – 32 Bit

Wenn eine Kamera das Signal  nur mit 8 Bit digitalisiert, wären das 2 hoch 8 = 256 verschiedene Stufen. Das ist sehr wenig.

Bei einer Digitalisierung von 16 Bit hätte man 2 hoch 16 = 65536 verschiedene Stufen. Das wäre sehr viel besser, um die Feinheiten eines Astro-Fotos darzustellen.

Das JPEG-Format hat leider nur 8 Bit; es ist also sehr zu raten, die Kamera so einzustellen dass im RAW-Format abgespeichert wird. Das ist in jedem Fall besser als JPEG.

Anwendungsbereiche der Bildbearbeitung

Grundsätzlich wird man unterschiedliche Anforderungen an die Bildverarbeitung haben bei

  • Mond und Planeten (und Sonne)                                             –> Aufnahme mit Software FireCapture
  • Nebel und Galaxien  (sog. “Deep Sky Objekte” = “DSO”)   –> Aufnahme mit Software APT

Bei ersterem (Mond, Planeten, Sonne) geht es eher um Detailverstärkung ( = Schärfen) evtl. auch um Kontrastreduzierung

Bei letzterem (Nebel und Galaxien) wird man nach einer Kontrastvertärkung (durch Stretchen) besonders das Rauschen wieder unterdrücken wollen.

Funktionen der Bildbearbeitung für Planeten

Da die Objekte eigentlich hell sind aber klein, wird ein Öffnungsverhältnis von f/20 empfohlen. Die kleinsten Details sollen 2 Pixel groß sein. Wenn die Pixel  ganz klein sind, käme man auch mit f/10 oder so aus.

Bei Planeten und Mond ist ganz besonders die Luftunruhe (das sog. “Seeing“) ein Hauptproblem.

Die gängige Technik gegen schlechtes Seeing ist das sog. “Lucky Imaging“, wobei man ein Video aufnimmt (also Einzelbilder mit kurzer Belichtungszeit)  und dann später aus dem Video diejenigen Einzelaufnahmen “Frames” benutzt, die am wenigsten durch schlechtes Seeing (Luftunruhe) beeinträchtigt sind.

Beliebte Software für dieses Lucky Imaging ist AutoStakkert. Auch Registax könnte man dafür nehmen.
Pionier auf diesem Gebiet war Georg Dittie mit seiner bahnbrechenden Software Giotto (Version 1.0 im Jahre 2000).

Nachdem man dem schlechten Seeing soweit ein Schnäppchen geschlagen hat, wird man das Bild dann häufig noch etwas Schärfen wollen.

Funktionen der Bildbearbeitung für DSOs

Stacking – Summenbild – Signal Noise Ratio (SNR)

Bei der Astrofotografie von DSOs macht man viele Einzelaufnahmen (“Frames”, “Sub-Exposures”), die man dann “Stacken” muss.

Die beliebteste (kostenlose) Software zum Stacken ist der Deep Sky Stacker “DSS”…

Rand abschneiden

Nach dem Stacking hat man oft einen kleinen schwarzen Rand um das Bild, weil vielleicht eine kleine Verschiebung der Bilder mit im Spiel war.

Diesen kleine Rand sollten wir abschneiden, da er nicht zum “Nutzsignal” gehört und z.B. das Histogramm auf der linken Seite verfälscht.

Sehr einfach kann man das mit der kostenlosen Software Fitswork machen.

Vignettierung entfernen

Sehr einfach kann man eine Vignettierung mit der kostenlosen Software Fitswork entfernen.

Farbkorrektur

Wenn das Histogramm unterschiedliche Spitzen für die Farbkanäle (Rot, Grün oder Gelb) anzeigt, kann man diese zur Deckung bringen und so grobe Farbstiche korrigieren.
Das kann man sehr einfach mit der Software Fitswork machen.

Gradienten entfernen – Hintergrund ebnen

Der Bildhintergrund sollte im Idealfall einen gleichmäßig dunklen Himmel zeigen. Wenn es da aber einen Hellikeitsverlauf gibt (z.B. oben dunkler, unten heller), spricht man von einem Gradienten.

Mit Fitswork lässt sich so ein Gradient relativ leicht entfernen.

Stretching – Histogramm

Spreizen – Streckung – Abschneiden – Gradationskurve – Gamma

Die Bearbeitung des Histogramms kann durch Software wie Fitswork, GIMP, Photoshop o.ä. erfolgen. Wichtig ist, dass die Software dafür eine 16 Bit Digitalisierung benutzt.

Alles, was man im Histogramm manipuliert, kann auch mit einer Manipulation der Gradationskurve erreichen.

Der linke Regler beim Histogramm setzt “fast schwarze” Pixel auf “ganz schwarz”; d.h. es wird links abgeschnitten (“geclippt”).

Der rechte Regler schneidet die ganz hellen Pixel ab, sodass das verbleibende Bild heller und kontrastreicher wird. Gravierender Nachteil ist, dass im Bereich der helleren Sterne Information verloren geht; man sieht ein “Ausblühen” der Sterne. Im Normalfall muss der rechte Regler also völlig Tabu sein.

Der mittlere Regler beim Histogramm ist etwas dubios. Man kann damit die Gradationskurve anheben oder absenken.
Wenn man nur diesen mittleren Regler bewegt (und nicht den linken und nicht den rechten), dann sieht man, dass dadurch die Gradationskurve genau in der Mitte angehoben (Fitswork: Regler nach rechts) oder abgesenkt (Fitswork: Regler nach links) wird.

Experten empfehlen folgende Vorgehensweise:

  1. Linken Regler nach rechts an das “Gebirge” vorsichtig heranfahren  (Achtung: nichts abschneiden)
  2. Rechten Regler so lassen, wie er ist.
  3. Mittleren Regler etwas “aufdrehen” (Fitswork: nach rechts)  so etwa in den rechten Anfang des “Gebirges” fahren
  4. Abspeichern
  5. Punkte 1-2-3 wiederholen, ggf. mehrfach…

Kontrastverstärkung – Gamma-Kurve

Lineare Kontrastkurve –

Kontrastverstärkung in mehreren Schritten

xyz

Rauschunterdrückung – Rauschreduzierung – Glättung

Siehe auch: Wavelets

Rauschfilterung wird auch als “Glätten” (z.B. bei Fitswork) oder auch als “Weichzeichner” bezeichnet.

Das Rauschen bedeutet Helligkeitsunterschiede in Flächen, die eigentlich einfarbig sein sollten, und ist in dunklen Bereichen meist am deutlichsten wahrnehmbar.

Bildrauschen entsteht, wenn das Licht nicht ausreicht, um das Bild ausreichend zu belichten.

Man kann dann den sogenannten ISO-Wert erhöhen. Dieser hellt das Bild auf, verursacht aber Bildrauschen.

Deep Sky Objekte (DSO)

Bei Deep-Sky-Aufnahmen ist es ja eigentlich immer so, dass “das Licht nicht ausreicht” – man hat also immer irgendwie mit “Rauschen” zu tun.

Allerdings wird man sich bei DSO als erstes mal mit dem Stretchen beschäftigen, um mehr Detail aus den lichtschwachen Objekten herauszubekommen (was hat Stretchen mit dem Begriff “Konstrastverstärkung”  zu tun? Mir hat das noch keiner erklärt.).

Durch das Stretchen hat man auch das Rauschen verstärkt, was man im zweiten Schritt dann “entfernen” oder Reduzieren möchte.

Ich habe das in einem ersten Anlauf mal mit Photoshop versucht:

Quelle: https://praxistipps.chip.de/photoshop-bildrauschen-entfernen-die-besten-tipps_38993

  • Ein DSO-Bild nach dem Stacken und Stretchen als 16-Bit in Photoshop geladen
  • Dann: Menüleiste –> Filter –> Camera Raw-Filter…
  • Bei den “Grundeinstellungen” auf das dritte Symbol von links (zwei Dreiecke) klicken
  • Dort gibt es “Schärfen” und Rauschreduzierung”. Schärfen will ich nicht;
    • bei Rauschreduzierung drehe ich den Luminanz-Schieber sehr weit nach rechts. Das bewirkt eine starke Rauschreduzierung
    • Luminanzdetails bedeutet, welcher welcher Luminanzbereich von der Rauschreduzierung verschont bleiben soll. Den stelle ich auf Null, weil ich die volle Wirkunk der Rauschreduzierung sehen möchte.

Zweiter Versuch mit Photoshop

Quelle: https://www.netzwelt.de/news/108131_2-photoshop-so-entfernen-bildrauschen.html

Die besten Ergebnisse erreichen Sie mit dem Filter “Rauschen reduzieren”. Diesen finden Sie im Menü unter “Filter” → “Rauschfilter”.

photoshop-01

In einem Dialogfeld mit Miniaturansicht nehmen Sie Ihre Einstellungen mithilfe von Schiebereglern oder der Eingabe von Werten vor. Dabei haben Sie folgende Optionen:

  • “Stärke”: Sie reduzieren das Luminanzrauschen gleichzeitig auf den drei Bildkanälen “Rot”, “Blau” und “Grün”.
  • “Details erhalten”: Sie können möglichst viele Bilddetails und Kanten bewahren. Je höher dabei der Wert eingestellt wird, umso mehr Details bleiben erhalten.
  • “Farbrauschen reduzieren”: Mit diesem Regler passen Sie das chromatische Rauschen an.
  • “Details scharfzeichnen”: Durch die Rauschreduzierung treten Schärfeverluste auf, die Sie hier anpassen können.
  • Wenn Sie die Checkbox “JPEG-Artefakt entfernen” aktivieren, versucht Photoshop, pixelige Bildfehler automatisch zu reparieren.

photoshop-02

Geübte Photoshop-Nutzer können in der Registerkarte “Pro Kanal” ihre Einstellungen kanalweise vornehmen. Für die nächste Bearbeitung speichern Sie Ihre Einstellungen optional im Dialogfenster mit Klick auf das Laufwerkssymbol neben “Einstellungen”.

Weichzeichner

Die beiden Filter “Selektiver Weichzeichner” und “Gaußscher Weichzeichner” verringern Bildfehler durch das Weichzeichnen, eine spezielle Art der Kontraständerung. Mit diesen Filtern arbeiten Sie differenzierter als mit “Rauschen reduzieren” und bewahren mehr Bilddetails. Sie finden beide Filter im Menü unter “Filter” → “Weichzeichnungsfilter”.

Im Dialogfeld des Gaußschen Weichzeichners senken Sie mit dem Schieberegler unter “Radius” den Kontrast benachbarter Pixel. Das Bild wirkt glatter. Stellen Sie jedoch den Radius nicht zu hoch ein, da das die Bildschärfe mindert.

Mit dem selektiven Weichzeichner können Sie neben dem Radius auch den Schwellenwert einstellen. Gehen Sie jedoch auch hierbei behutsam vor. Bei zu starker Weichzeichnung “verschwimmen” die Kanten.

Die Entfernung des Bildrauschens geht immer ein bisschen mit der Reduzierung der Bildschärfe einher. Sie müssen daher je nach Bild entscheiden, inwieweit die Rauschentfernung angewendet werden soll.

Schärfen

Quelle: Erik Wischnewski: Astronomie in Theorie und Praxis, 7. Auflage, S. 172

Unscharf bedeutet, dass Hell-Dunkel-Übergänge sanft verlaufen. Scharf bedeutet, dass diese Übergänge härter (schneller und auf kurzer Strecke) erfolgen.

Schärfungsalgorithmen versuchen also aus einem weichen Übergang einen harten zu machen.

Schärfung darf nicht übertrieben werden. Was im Original nicht scharf ist, kann auch nicht mehr im nachhinein scharf gemacht werden.

Zum Schärfen gibt es spezielle Schärfungsfilter z.B. Iterative Gauß-Schärfung.

Schärfen erhöht das Bildrauschen….

Der Schwellwert des Schärfefilters sollte so klein eingestellt werden, das kleinere Helligkeitsunterschiede beim Schärfen ignoriert werden.

xyz

Gezielt nur Teile eines Bildes bearbeiten: Ebenen und Masken

Das kann man sehr gut mot Adobe Photoshop machen.

 

 

 

 

 

Computer: Windows 10 – User anlegen bzw. aktivieren

User-Verwaltung

Wir rufen die Kommandozeile (Eingabeaufforderung)  “CMD” als Administrator auf. Z.B. über:

  • Computerverwaltung –> CMD
  • Win+X –> Eingabeaufforderung (Administrator)

Aktivieren eines vorhandenen Users:

  • net user administrator /active:yes

Einrichten eines neuen Users:

  • net user administrator [passwd]

Erleichterte Bedienung

Die Einstellungen zu “Erleichterte Bedienung” wird in Windows 10 direkt durch das programm “utilman.exe” aufgerufen. Contine reading